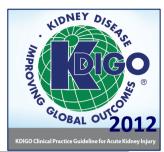
Acute Kidney Injury e progressione della malattia renale cronica

Enrico Fiaccadori

Unita' di Fisiopatologia dell'Insufficienza Renale Acuta e Cronica Dipartimento di Medicina Clinica e Sperimentale Universita' degli Studi di Parma


Unita' Operativa Complessa di Clinica e Immunologia Medica e Terapia Intensiva Nefrologica Azienda Ospedaliera-Universitaria Parma

Agenda

- Insufficienza renale acuta vs danno renale acuto (Acute Kidney Injury, AKI)
- Definizione e classificazione dell'AKI
- Epidemiologia e prognosi dell'AKI
- Progressione dall'AKI alla CKD: un continuuum di malattia
- Cosa si puo' fare

Stage	Serum creatinine	Urine output
1	1.5-1.9 times baseline	<0.5 ml/kg/h for
	≥0.3 mg/dl (≥26.5 μmol/l) increase	6–12 hours
2	2.0-2.9 times baseline	<0.5 ml/kg/h for ≥12 hours
3	3.0 times baseline OR Increase in serum creatinine to ≥4.0 mg/dl (≥353.6 µmol/l)	<0.3 ml/kg/h for ≥24 hours OR Anuria for ≥12 hours
	OR Initiation of renal replacement therapy OR, In patients < 18 years, decrease in eGFR to < 35 ml/min per 1.73 m ²	Nello stadio 3, soprattutto nei pazienti in terapia intensiva,
	Kidney Internationa	spesso si rende necessaria la dialisi

Acute kidney injury: an increasing global concern

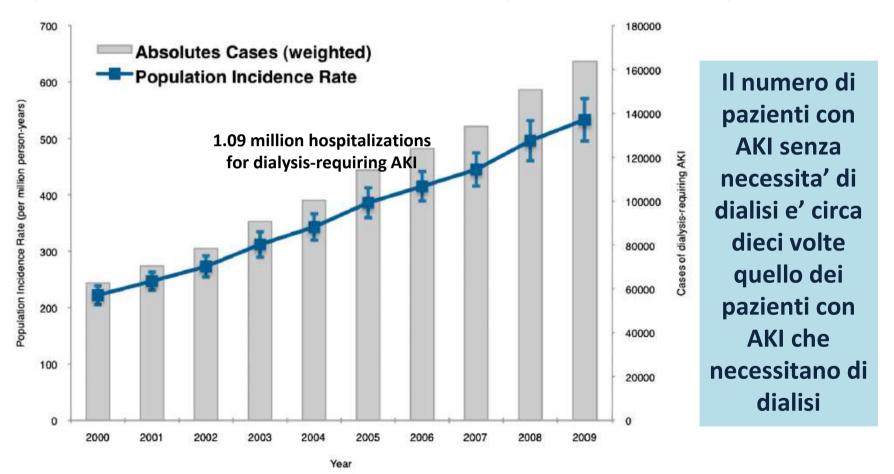
Norbert H. Lameire, Arvind Bagga, Dinna Gruz, Jan De Maeseneer, Zoltan Endre, John A Kellum, Kathleen D. Liu, Ravindra L. Mehta, Neesh Pannu, Wim Van Biesen, Raymond Vanholder

Lancet 2013; 382: 170-79

Acute kidney injury: global health alert

Philip Kam Tao Li¹, Emmanuel A. Burdmann² and Ravindra L. Mehta³, for the World Kidney Day Steering Committee 2013⁴

Kidney International (2013) 83, 372-376;


World Incidence of AKI: A Meta-Analysis

Paweena Susantitaphong, *** Dinna N. Cruz, * Jorge Cerda, "Maher Abulfaraj, * Fahad Alqahtani, * Ioannis Koulouridis, ** and Bertrand L. Jaber, ** for the Acute Kidney Injury Advisory Group of the American Society of Nephrology

Clin J Am Soc Nephrol 8: 1482-1493, 2013.

Temporal Changes in Incidence of Dialysis-Requiring AKI

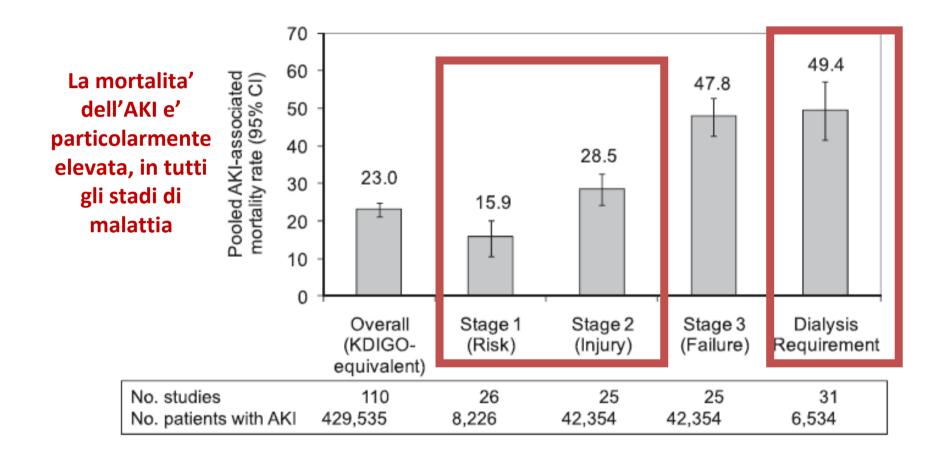

Raymond K. Hsu,* Charles E. McCulloch,† R. Adams Dudley,* Lowell J. Lo,* and Chi-yuan Hsu*

Figure 1. Population incidence of dialysis-requiring AKI in the United States from 2000 to 2009 (absolute count and incidence rate per million person-years). I bars represent 95% CIs for incidence rates. The number of cases of dialysis-requiring AKI increased from 63,000 in 2000 to almost 164,000 in 2009; the population incidence increased at 10% per year from 222 to 533 cases/million person-years.

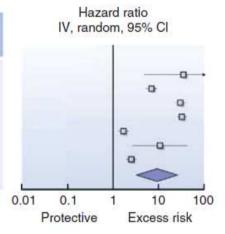
World Incidence of AKI: A Meta-Analysis

Paweena Susantitaphong, *^{†‡} Dinna N. Cruz, [§] Jorge Cerda, [∥] Maher Abulfaraj, * Fahad Alqahtani, * Ioannis Koulouridis, *[†] and Bertrand L. Jaber, *[†] for the Acute Kidney Injury Advisory Group of the American Society of Nephrology

L'incremento di mortalita' a breve e lungo termine dopo un episodio di AKI e' piu' spesso secondario a cause cardiovascolari

TABLE 3 In-hospital Outcome		
	(+) CIN (n = 381)*	(-) CIN (n = 1,599)*
Patients with CKD		
Death	6.3%	0.8%
Cardiac death	4.0%	0.5%
Coronary artery bypass grafting	5.8%	0.5%
Major adverse cardiac event	9.3%	1.1%
Packed red cell transfusion	28%	6%
Vascular surgery of access site	5.6%	2.6%
Postprocedure length of stay, mean ± SD (d)	6.8 ± 7.1	2.3 ± 2.5
Patients without CKD		
Death	2.5%	0.1%
Cardiac death	2.0%	0%
Coronary Bypass grafting	3.0%	0.7%
Major adverse cardiac events	6.8%	0.9%
red cell transfusion	10%	000
Vascular surgery or access sinc	4.0 /0	0.8%
	3.6 ± 5.1	1.8 ± 2.4
*p <0.0001 for both groups.		

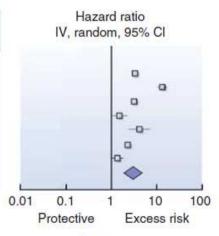
TABLE 4 Cumulative One-year classification)	Outcome (h	nierarchico	al
	(+) CIN	(-) CIN	p Value
Patients with CKD			
Death	22.6%	6.9%	< 0.0001
Out-of-hospital death	16.3%	6.1%	< 0.0001
Q-wave myocardial infarction	0.3%	0.8%	0.31
Target vessel revascularization	14.0%	16.9%	0.20
Major adverse cardiac events	36.9%	24.6%	< 0.0001
Patients without CKD			
Death	8.0%	2.7%	< 0.0001
Out-of-hospital death	6.5%	2.6%	< 0.0001
Q-wave parameters on	0.6%	0.070	0.40
Target vessel revascularization	19.8%	18.7%	0.52
Major adverse cardiac events	28.4%	21.9%	< 0.0001

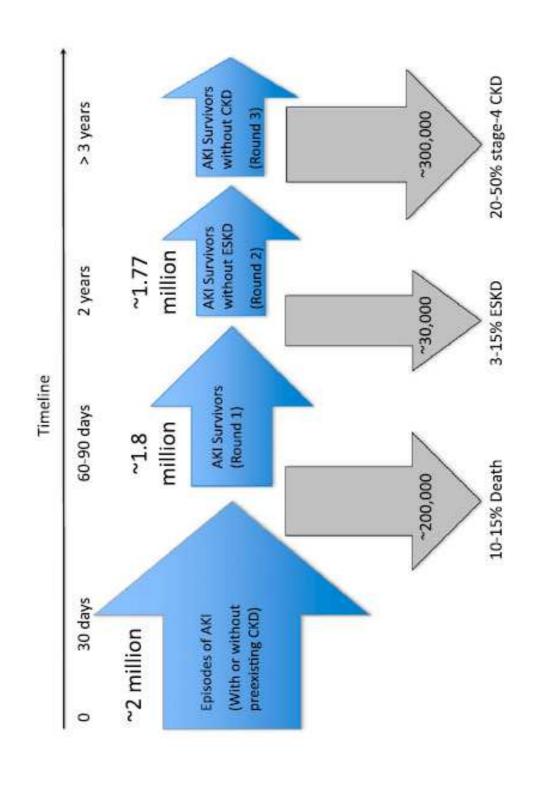

Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis

Steven G. Coca^{1,2,3}, Swathi Singanamala^{1,3} and Chirag R. Parikh^{1,2}

a

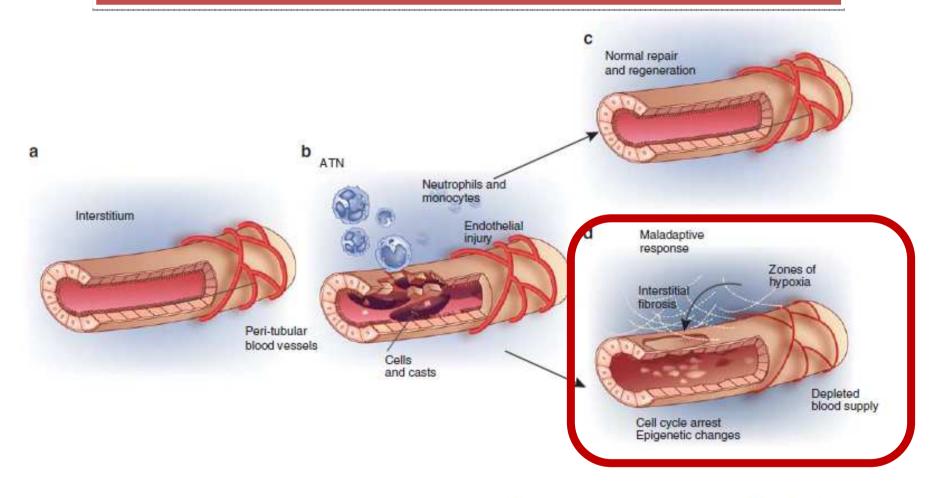
Study or subgroup	Weight (%)	Hazard ratio IV, random, 95% Cl
Weiss et al. (13)	10.0	32.79 (4.30-249.77)
Amdur et al. (22)	15.5	6.64 (5.05-8.74)
Lo et al. (11)	15.5	28.08 (21.01-37.53)
James et al. (16)	15.6	29.99 (24.32-36.99)
James et al. (15,23)	15.5	1.60 (1.20-2.14)
Ando et al. (19)	12.4	9.91 (2.48-39.63)
Ishani et al. (21)	15.6	2.33 (1.83-2.96)
Total (95% CI)	100.0	8.82 (3.05-25.48)


Heterogeneity: $\tau^2 = 1.87$; $\gamma^2 = 446.89$, d.f. = 6 (P < 0.00001); $I^2 = 99\%$. Test for overall effect: Z = 4.02 (P < 0.0001)

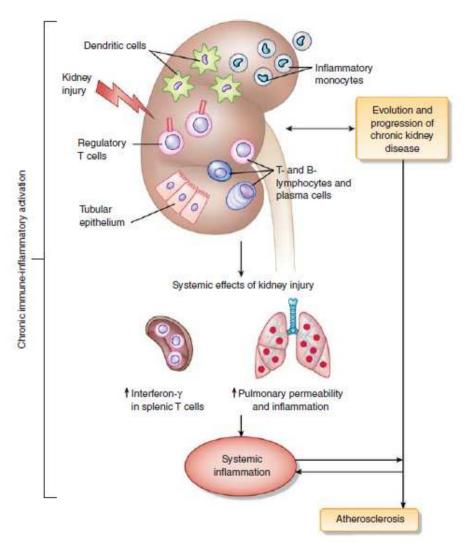

Il rischio di progredire verso una CKD e' aumentato di 10 volte

Study or subgroup	Weight (%)	Hazard ratio IV, random, 95% Cl
Newsome et al. (14)	15.0	3.26 (2.87-3.70)
Ishani et al. (20)	14.8	12.99 (10.57-15.96)
Wald et al. (17)	14.9	3.22 (2.70-3.85)
Hsu et al. (10)	13.5	1.47 (0.95-2.28)
James et al. (15,23)	12.5	4.15 (2.32-7.41)
Lafrance et al. (18)	15.0	2.33 (2.08-2.61)
Choi et al. (12)	14.4	1.37 (1.02-1.84)
Total (95% CI)	100.0	3.10 (1.91-5.03)

Heterogeneity: $\tau^2 = 0.40$; $\chi^2 = 252.85$, d.f. = 6 (P < 0.00001); $I^2 = 98\%$. Test for overall effect: Z = 4.58 (P < 0.00001)


Il rischio di dialisi cronica e' aumentato di 4 volte

Clin J Am Soc Nephrol 8: 476-483, 2013.

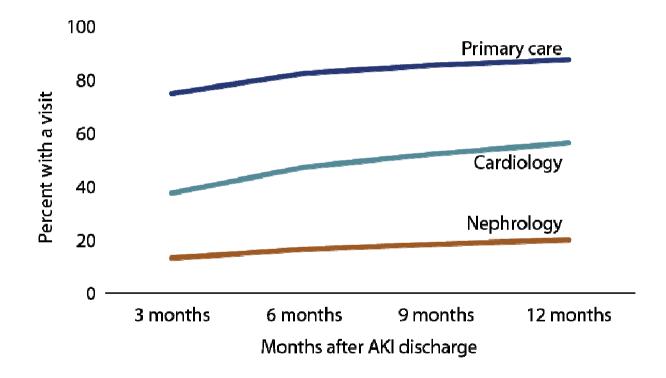

Quali sono i meccanismi che determinano la transizione dall'AKI alla CKD

La fibrosi renale dopo un episodio di AKI come espressione di una risposta maladattativa all'infiammazione innescata dal danno da ischemico

Kidney International (2012) 82, 516-524;

Novel inflammatory mechanisms of accelerated atherosclerosis in kidney disease

L'infiammazione secondaria all'ischemia renale come primum movens di infiammazione sistemica e aterosclerosi accelerata



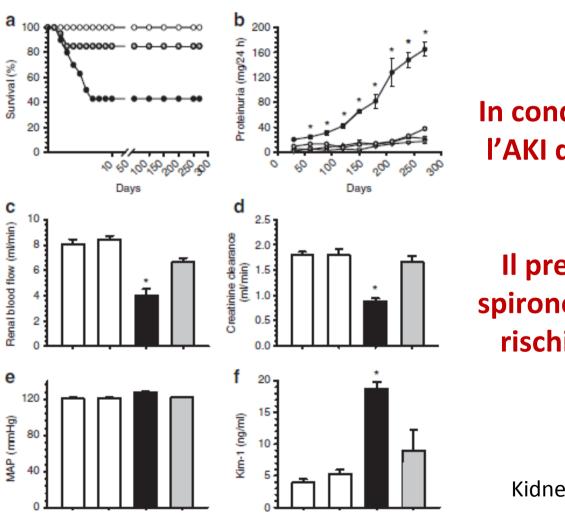
eventi e decessi da cause cardiovascolari

Prevenzione della CKD dopo un episodio di AKI

- -Il ruolo del follow-up nefrologico
- -Il ruolo dell'approccio farmacologico

Visite ambulatoriali dopo un episodio di AKI

Medicare AKI patients age 66 & older, 2009–2010.

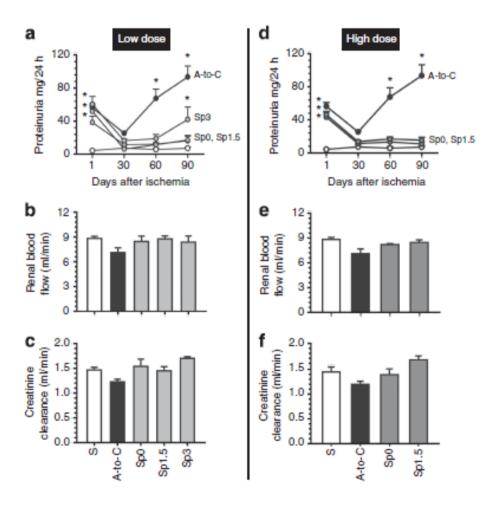

Canadian Society of Nephrology Commentary on the 2012 KDIGO Clinical Practice Guideline for Acute Kidney Injury

Le linee guida KDIGO 2013 sulll'AKI suggeriscono che dopo un episodio di AKI i pazienti, dovrebbero essere valutati in termini di entita' del recupero della funzione renale, CKD di nuova insorgenza o peggioramento di pre-esistente CKD a 3 mesi dall'episodio. Tale raccomandazione puo' avere implicazioni rilevanti sul sistema sanitario nazionale, in quanto il rapporto costo efficacia questa strategia non e' noto

Tra i problemi non risolti l'appropriato trattamento dei pazienti dopo un episodio di AKI, chi debba essere sottoposto a follow-up (tutti o solo pazienti a rischio piu' elevato), l'identificazione dei pazienti piu' a rischio di progressione, e quali strategie di prevenzione debbano essere messe in atto

Spironolactone prevents chronic kidney disease caused by ischemic acute kidney injury

Jonatan Barrera-Chimal^{1,2}, Rosalba Pérez-Villalva^{1,2}, Roxana Rodríguez-Romo^{1,2}, Juan Reyna^{1,2}, Norma Uribe³, Gerardo Gamba^{1,2} and Norma A. Bobadilla^{1,2}


In condizioni sperimentali l'AKI determina sviluppo di CKD

Il pre-trattamento con spironolattone previene il rischio di progressione

Kidney Int 2013; 83:93-103

Spironolactone prevents chronic kidney disease caused by ischemic acute kidney injury

Jonatan Barrera-Chimal^{1,2}, Rosalba Pérez-Villalva^{1,2}, Roxana Rodríguez-Romo^{1,2}, Juan Reyna^{1,2}, Norma Uribe³, Gerardo Gamba^{1,2} and Norma A. Bobadilla^{1,2}

Lo spironolattone puo' prevenire lo sviluppo di CKD anche se somministrato dopo l'insulto ischemico

Kidney Int 2013; 83:93-103

AKI Transition of Care: A Potential Opportunity to Detect and Prevent CKD

Stuart L. Goldstein,* Bertrand L. Jaber, Sarah Faubel, and Lakhmir S. Chawla, for the Acute Kidney Injury Advisory Group of the American Society of Nephrology

Clin J Am Soc Nephrol 8: 476-483, 2013.

Cause di CKD

- -Nefropatie primitive (glomerulonefrite, nefrite interstiziale etc.)
- -Nefropatie secondarie (diabete, ipertensione etc.)
- -Malattie congenite(rene policistico etc.)
- -Infezioni e litiasi vie urinarie
- -Acute Kidney Injury

Acute kidney injury and chronic kidney disease: an integrated clinical syndrome

Lakhmir S. Chawla^{1,2} and Paul L. Kimmel^{2,3}

La distinzione tra AKI e CKD puo' essere artificiosa nel medio e lungo termine

Il nuovo concetto di continuum di malattia nell'a CKD post AKI: una sindrome integrata caratterizzata da riduzione della funzione renale e dalla possibile progressione della riduzione della funzione renale