Il ruolo di nuove tecniche di imaging per la diagnosi precoce di demenza

Livia Ruffini

SC Medicina Nucleare Azienda Ospedaliero-Universitaria di Parma

- A. Different tracers to determine
 - Perfusion
 - Glucose utilization
 - Dopaminergic function
 - Neuroreceptors ligands behaviour
 - Aminoacide transport

B. Kinetic model of tracer

- C. Quantitative maps of regional in vivo
 - physiology
 - biochemistry
 - pharmacology

Molecular Imaging has substantially contributed to characterizing and better understanding the brain pathology underlying the motor and cognitive manifestations of ND

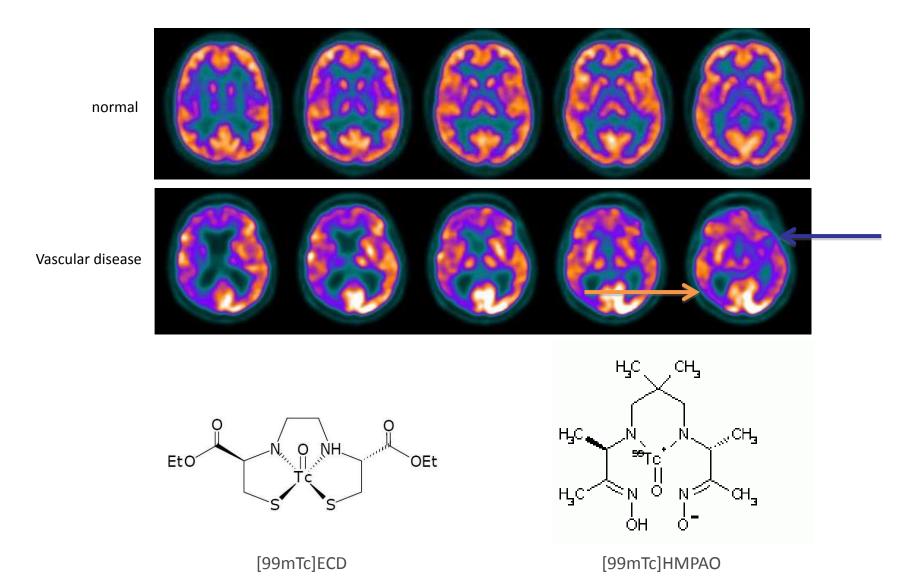
✓ Setting

- disease severity as reflected by presynaptic dopamine terminal dysfunction or amyloid load → decision making
- subclinical dysfunction in subjects who are at risk for ND
- management and follow-up
- disease progression and monitoring drug efficacy
- ✓ Imaging tools with increasing complex application (hybrid imaging)

SPECT \rightarrow SPECT/CT \rightarrow PET/CT \rightarrow PET/MRI fusion

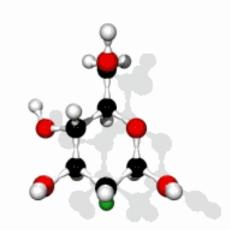
✓ Adding CT/MRI enhances accuracy and interobserver agreement

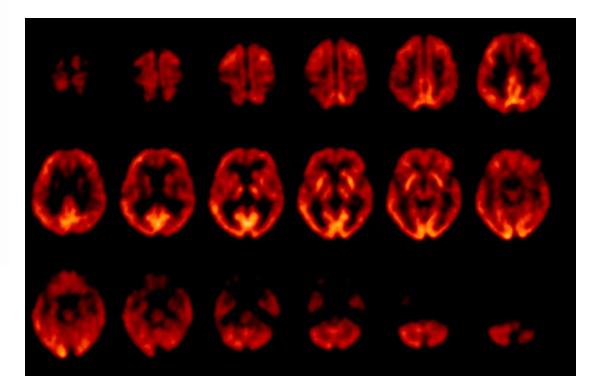
Advantages


- ✓ Quantifies specific molecular targets down to sub-nanomolar levels
- ✓ Links biological processes to symptoms and other clinical outcomes
- ✓ Enables treatments to be evaluated and monitored
- ✓ Enable translational approaches

SPECT

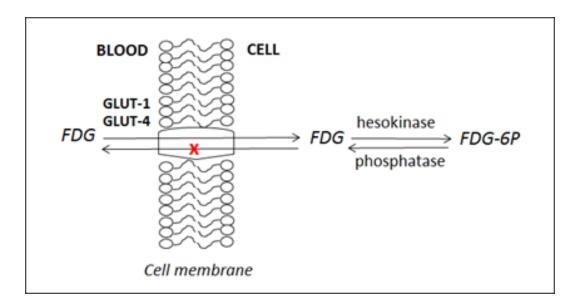
Brain perfusion: [99mTc]HMPAO, [99mTc]ECD SPECT


Method: Siemens Scenium analysis


Region of Interest	Side	Min Uptake	Mean Uptake	Max Uptake	Mean # Std. Dev.
Basal ganglia	L	4.552	9.549	12.992	0,7
Basal ganglia	R	3.216	9.025	13.593	-0,3
Central region	L	4.607	9.649	13.074	2,1
Central region	R	4.436	9.614	13.701	3,2
Cerebellum	L	1.286	10.162	15.361	-0,3
Cerebellum	R	1.804	10.315	16.184	0,9
Cingulate and paracingulate gyri	L	5.516	10.247	14.464	3,8
Cingulate and paracingulate gyri	R	5.311	9.728	14.331	2,8
Frontal lobe	L	3.587	10.334	15.061	3,6
Frontal lobe	R	3.873	10.534	14.869	4,7
Mesial temporal lobe	L	6.060	8.627	11.193	1,1
Mesial temporal lobe	R	2.663	8.778	11.935	1,4
Occipital lobe	L	4.505	11.384	14.907	3,4
Occipital lobe	R	3.436	10.927	14.461	3,3
Parietal lobe	L	3.527	10.227	14.830	2,0
Parietal lobe	R	2.515	9.899	14.504	2,3
Temporal lobe	L	4.506	10.575	13.673	3,0

10 W. A. M. C. WA A COMPANY OF B. HELLOW LANKS President contra 14 % U.V.O. 1003 Can 1343 10+315-3164 A CHERRY AND B. = 1.10, 0, 0, 0, 0, 0, 0, 0 Car 13/0 - 10-110 010 31 A 11 10/0 - 2010 1.14 2.00 10-5 1 200-N 3- 0 0.01 100-0 P MINE ALAMAS

Cellular glucose utilization: [18F]FDG PET

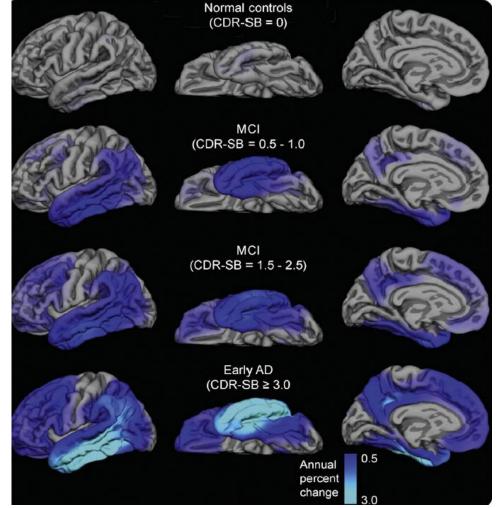


Radioactive Sugar

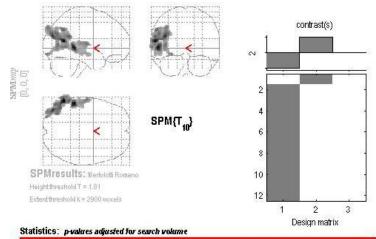
Normal brain and glucose consumption

Neuronal glucose utilization: FDG PET

 FDG PET images are most often normal in the early stage and by visual assessment



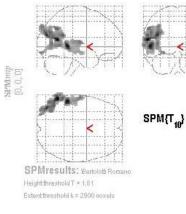
The most widely used FDG PET analysis methods for neurology research include, among others: Neurostat (University of Washington, Seattle) T-SUM tool implemented in PMOD hypometabolic convergence indexes Statistical Parametric Mapping procedures (SPM; Wellcome

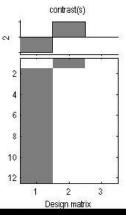

Department of Cognitive Neurology, London, U.K.)

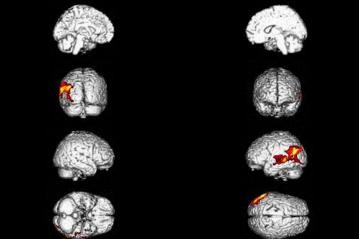
→ Spatial normalization procedures to enable voxel-based comparison of a patient's scans to a normative reference database

→ Yield statistical maps depicting deviations from norms at the individual voxel level, on a subject-by-subject basis

Annual atrophy rates as a function of degree of clinical impairment. Atrophy rates are most prominent in posterior brain regions early in the course of disease, spreading to anterior regions as the level of impairment increases, with relative sparing of sensorimotor regions

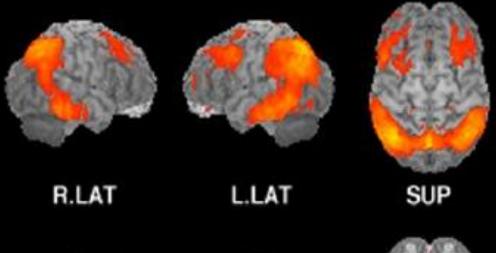



	cluster-level		voxel-level				to a m from the			
<u>.</u>	Poorrected	k E	Puncorrected	P RUBson	P FDR-som	T	(Z <u>_</u>)	ρ _{uncorrected}	x,y,z (mm)	
	0.070	2985	0.000	1.000	0.861	4.85	3.40	0.000	-60 -58	14
				1.000	0.851	4.51	3.25	0.001	-54 -38	0
				1.000	0.861	3.93	2.99	0.001	-40 -82	24


Method: PET-SPM5, SPM8 dedicated Software

 Comparison of uptake value with normal control database

✓ P value < 0.01</p>



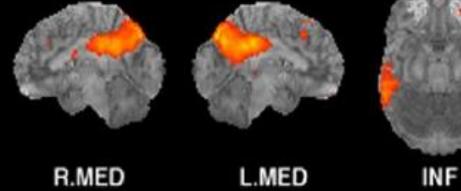
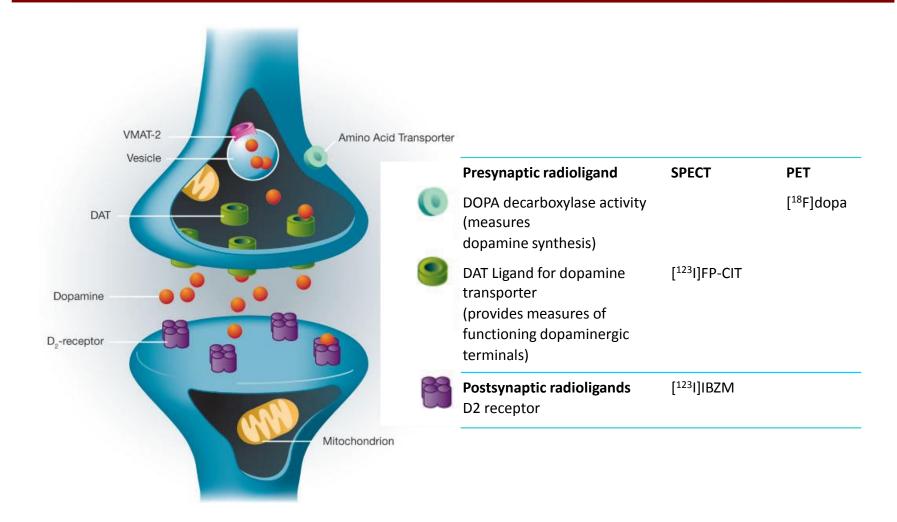
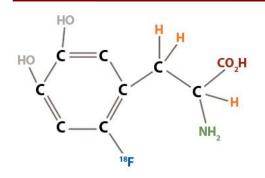


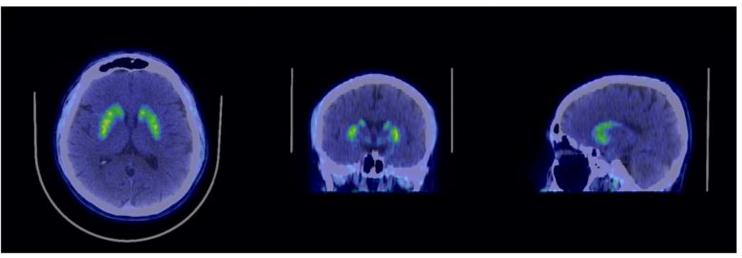
table shows 3 local maxima more than 8.0mm apart


Height threshold: T = 1.81, p = 0.049 (1.000) Extent threshold: k = 2900 voxels, p = 0.000 (0.081) Expected voxels per cluster; <k> = 181.228 Expected number of clusters; <c> = 0.08 Expected false discovery rate; <= 0.86 Degrees offreedom = [1.0, 10.0] Smoothness FWHM = 11.4 12.2 13.2 (mm) = 5.7 6.1 6.6 (voxels) Search vol.4 v05812 cmm; 507289 voxels; 2113.0 resels Voxel size: [2.0, 2.0, 2.0] mm (1 resel = 230.98 voxels)

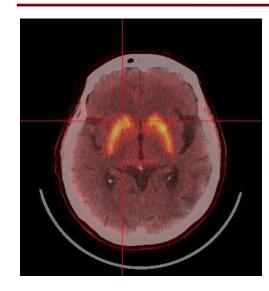
Quantitative evaluation of glucose rate uptake



DOPAMINERGIC IMAGING

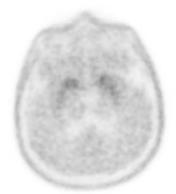


DOPA decarboxylase activity: [18F]DOPA PET

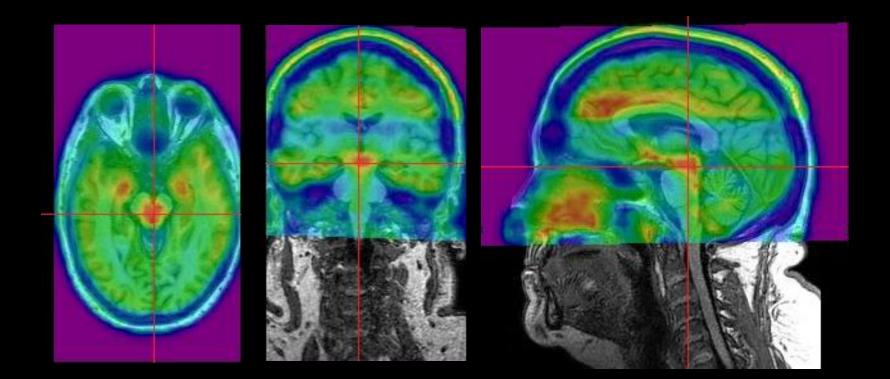

Functional state of dopamine innervations in living brain Pre-synaptic radioligand

PET/CT

- Striatal [18F]DOPA uptake has been shown to correlate with dopaminergic cell densities in the substantia nigra and with striatal dopamine levels.
- Uninfluenced by dopaminergic medication, suggesting the usefulness of [18F]DOPA PET as a biomarker for monitoring the progression.

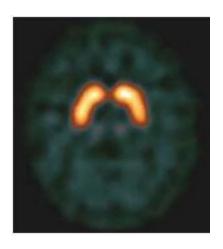

DOPA decarboxylase activity: [18F]DOPA PET/CT

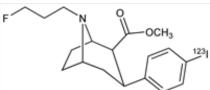
Drug induced tremor Normal uptake


n.00 fr 00

Advanced Parkinson's disease

Lower [18F]DOPA uptake in the putamen has also been correlated with greater severity of motor symptoms and greater severity of bradykinesia and rigidity in PD


[¹⁸F]dopa PET/MR fusion Dynamic PET imaging

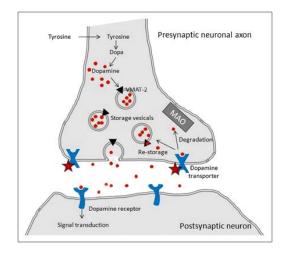


PD Restless leg syndrome

Dopamine transporter (DAT): [123]FP-CIT SPECT (DatScan)

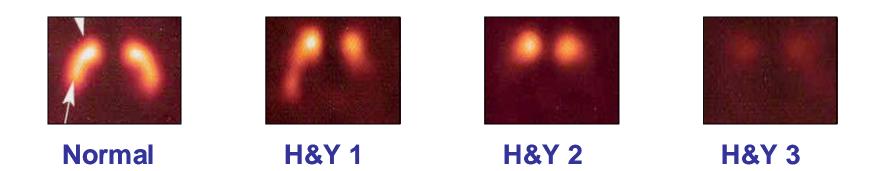
- ✓ DAT is a sodium chloride-dependent transmembrane protein
- ✓ DAT controls dopamine levels by active reuptake of dopamine from the synaptic cleft after its interaction with the postsynaptic receptor
- ✓ Striatal 123I-FP-CIT uptake is correlated with DAT density

Europe

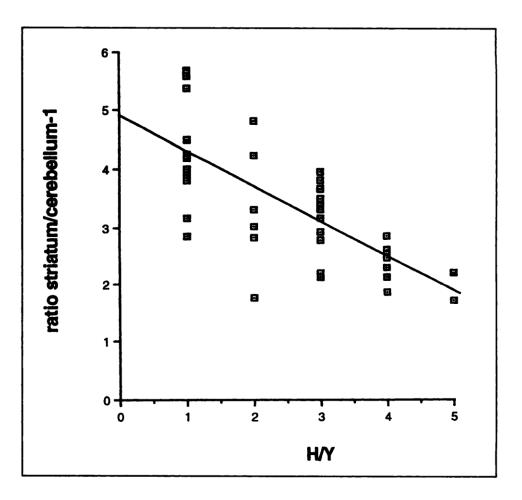

2000 authorized for clinical use for the differential diagnosis of patients with clinically uncertain Parkinsonian syndrome

2006 expanded for the differential diagnosis of probable dementia with Lewy bodies from Alzheimer disease

USA

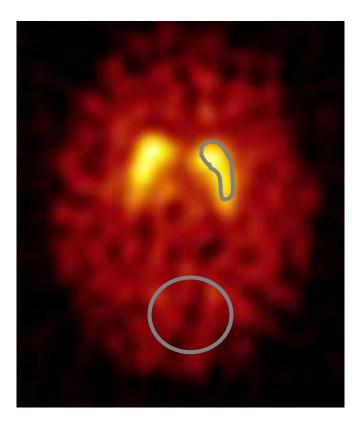

2011 FDA approval of 123I-FP-CIT for clinical use

Visualization of the presynaptic DAT distribution in the striatum


Dopamine transporter (DAT): [123I]FP-CIT SPECT

Functional integrity of dopaminergic nerve terminals in the striatum Pre-synaptic radioligand

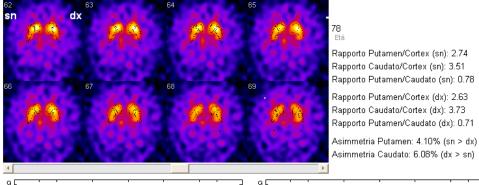
Biomarker of Parkinson disease progression (related to the Hoehn & Yahr rating scale)


Annual rate of reduction of striatal DAT uptake 6 - 13% in PD patients (versus 0 to 2.5% in healthy controls)

Putamen uptake of [123I]FP-CIT inversely correlates with Unified Parkinson's Disease Rating scale (UPDRS)

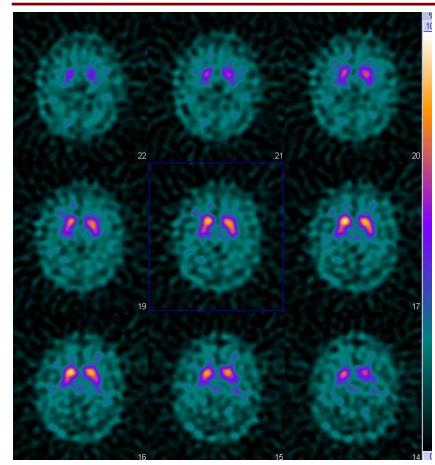
ROI (Region of Interest) method for quantification

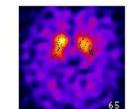
Striatum/posterior cortex binding ratio Striatum ROI cnts/ occipital ROI cnts %

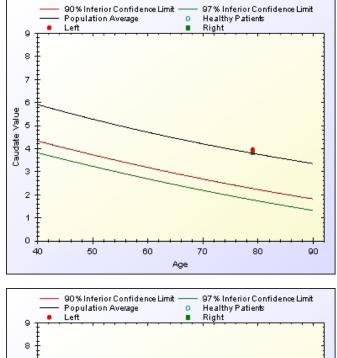

Putamen

3

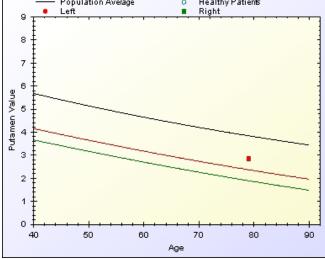
Method: Basal Ganglia dedicated Software

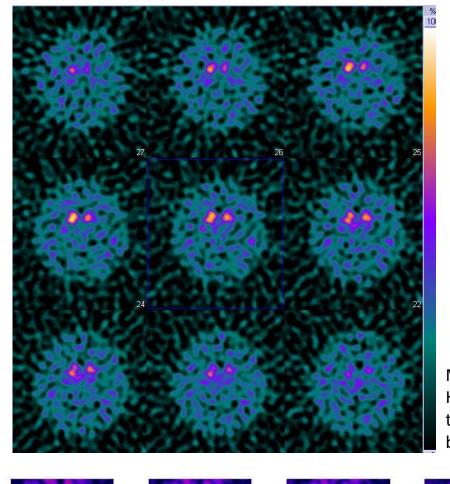

Eur J Nucl Med Mol Imaging (2007)


U.O. MEDICINA NUCLEARE - AZIENDA OSPEDALIERO-UNIVERSITARIA DI PARMA ANALISI SEMIQUANTITATIVA CON METODO BASAL GANGLIA

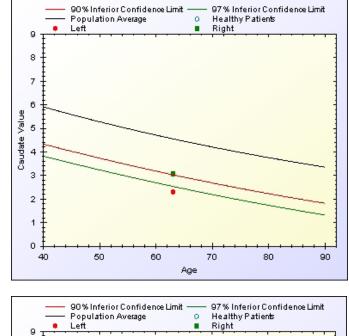

< 50 60 70 80 90 < Età < 50 60 70 80 90 < Età I risultati dell'esame del paziente sono rappresentati su di un grafico costruito analizzando con il metodo Basal Ganglia una popolazione non parkinsoniana di 50 soggetti (studio multicentrico). Le linee grigie rappresentano, all'interno della fascia di età tra 50 e 90 anni, i limiti di normalità con una confidenza del 90%

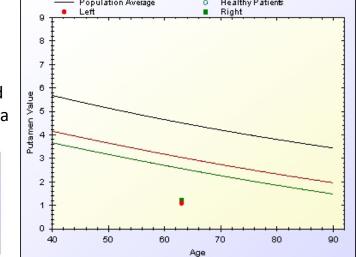
- ✓ 3D method for striatal authomatic segmentation with anatomical reference in the Talairach e Tournoux atlas
- Comparison of uptake value with normal control database.

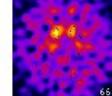


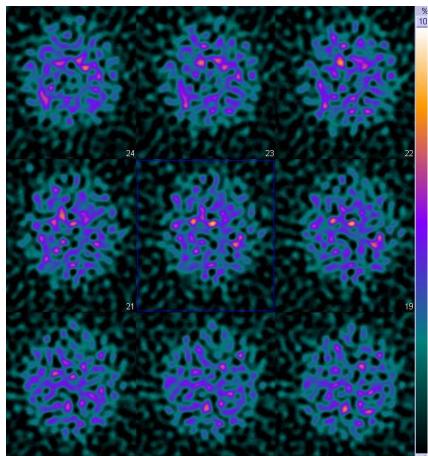


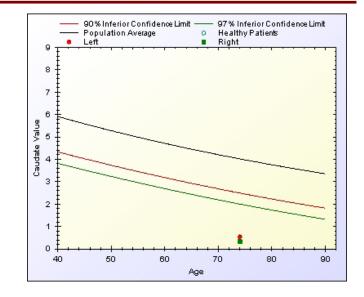
Method: Basal Ganglia dedicated Software

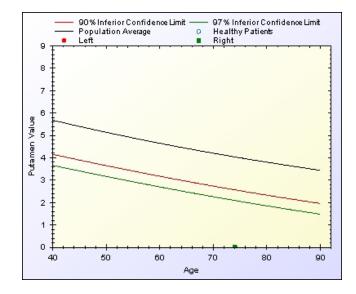


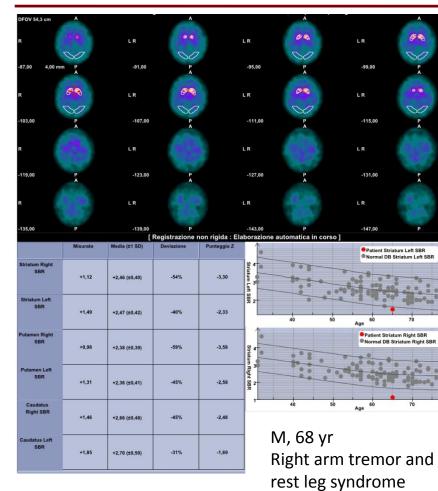


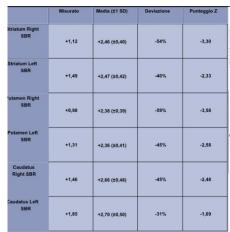


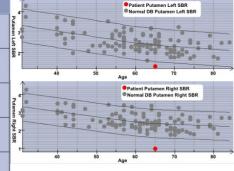

Method: Basal Ganglia dedicated Software



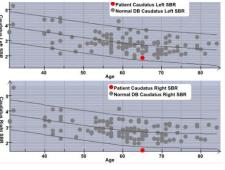

M, 60 yr Hands tremor and bradikinesia


Method: Basal Ganglia dedicated Software



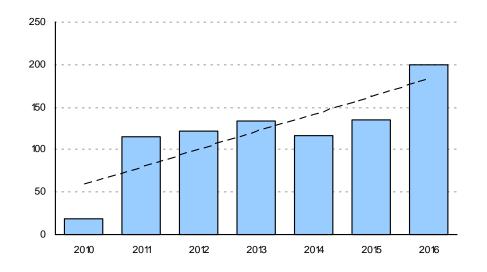

M, 71 yr Advanced PD

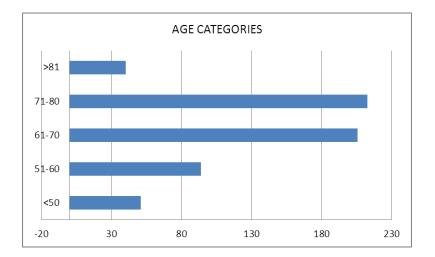
Method: DatQuant® (GE Healthcare)

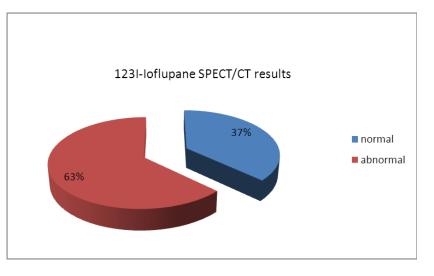


Certified for clinical trials Normal population: 18-85 yrs

	100000000			
Striatum Right SBR	+1,12	+2,46 (±0,40)	-54%	-3,30
Striatum Left SBR	+1,49	+2,47 (±0,42)	-40%	-2,33
utamen Right SBR	+0,98	+2,38 (±0,39)	-59%	-3,58
Putamen Left SBR	+1,31	+2,36 (±0,41)	-45%	-3,58
Caudatus Right SBR	+1,46	+2,66 (±0,48)	-45%	-2,48
Caudatus Left SBR	+1,85	+2,70 (±0,50)	-31%	-1,69

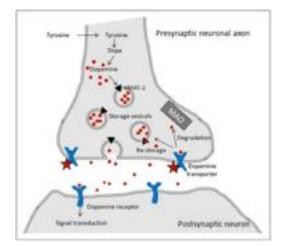


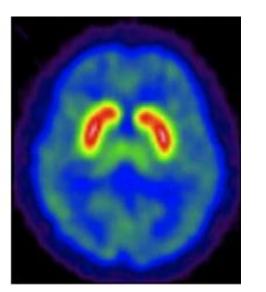

Drugs to be stopped for 4 wk before [1231]FP-CIT SPECT


DRUG CLASS	DRUG NAME	EFFECT ON [1231]FP-CIT binding
COCAINE		\downarrow
AMPHETAMINES	d-Amphetamine methamphetamine methylphenidate	\downarrow
CNS STIMULANTS	Phentermine or ephedrines	igstaclow influences are likely when used as tablets
MODAFINIL		\downarrow
ANTIDEPRESSANTS	Mazindol bupropion radafaxine	\downarrow
ADRENERGIC AGONISTS	Phenylephrine or norepinephrine	$ightharpoonup{ightarrow}$ influences are likely when infused at high doses
ANTICHOLINERGIC DRUGS		Benztropine ↓ Other anticholinergics ↑ (which will likely not affect visual assess)
OPIOIDS	Fentanyl	\downarrow
ANESTHETICS	Ketamine PCP Isoflurane	\downarrow

Antiparkinsonian drugs including L-dopa, dopamine agonists, monoamine oxidase-B inhibitors, and catechol-O-methyl transferase inhibitors do not need to be discontinued.

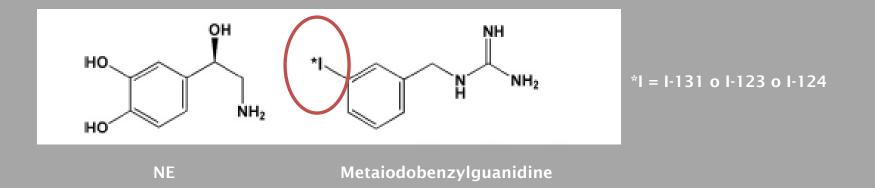
They showed no significant effect on the striatal 123I-FP-CIT uptake.





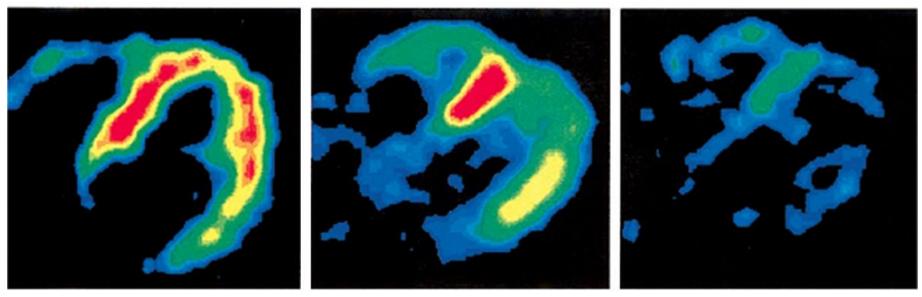
Dopamine receptor imaging D2/3R receptor: [123]IBZM SPECT

Postsynaptic radioligand Selective D2/3R antagonist



- Upregulation of D2/3R in early PD
- Biomarker of the striatal dopaminergic reward system in obesity

Cardiac adrenergic innervation: 123I-mIBG SPECT

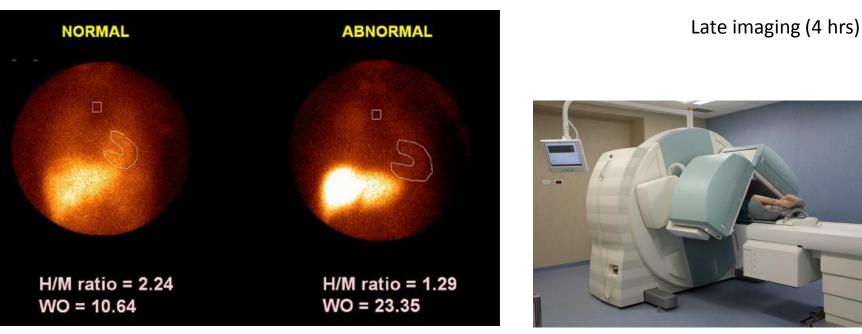

- **1994** [131I]MIBG received Food and Drug Administration (FDA) approval (NDA 20-084) as an imaging agent
- **2008** [123I]MIBG approved by FDA (NDA 22-290) as a tumor imaging agent (Adreview; GE Healthcare, Little Chalfont, UK).
- In Europe and Japan [123I]MIBG and [131I]MIBG were approved for tumor imaging more than 10 years ago

Chemistry

Progressive loss of uptake in Parkinson's disease 1231-*m*IBG SPECT

Normal

Parkinson

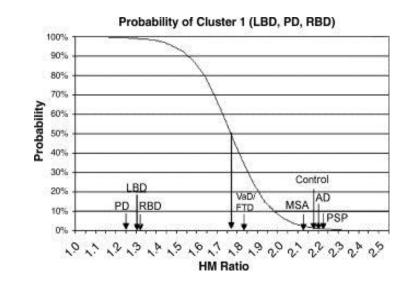


Baseline

After 2 years

mIBG scanning

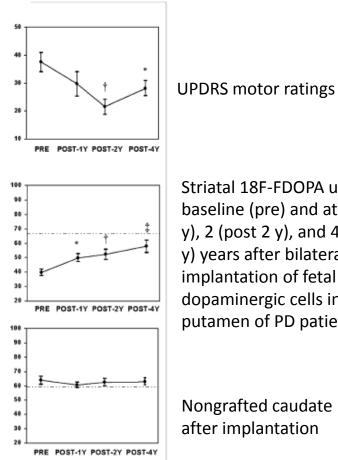
Early imaging (15 min after injection)



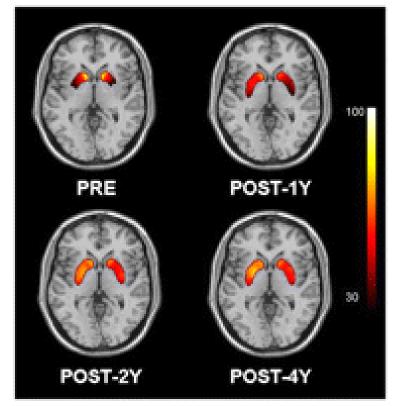
Early H/M reflects the integrity of presynaptic nerve terminals and uptake-1 function.

Late H/M combines information on neuronal function from uptake to release through the storage vesicle at the nerve terminals.

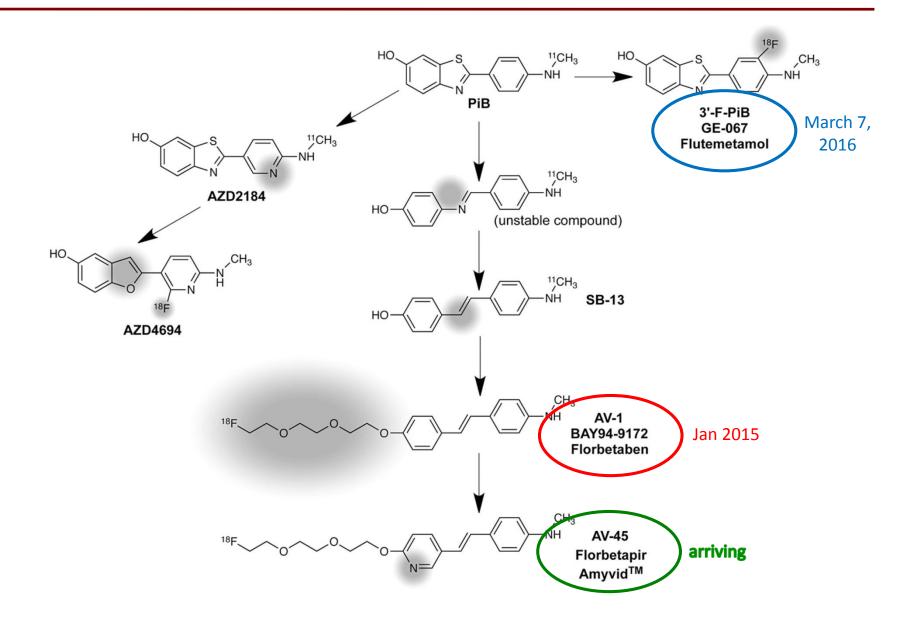
Washout is an index of the degree of sympathetic drive. Increased adrenergic drive is associated with high myocardial 123I-MIBG washout and low myocardial 123I-MIBG delayed uptake.


Meta-analysis of 123I-mIBG cardiac scintigraphy for the diagnosis of Lewy body–related (DLB and PD) disorders and non-LB-related diseases (ie, AD and MSA)

- 124 clinical samples drawn from 47 published studies.
- Data from 2965 subjects


- 123I-mIBG cardiac scintigraphy can accurately distinguish between 2 movement disorders, Parkinson's disease and multiple system atrophy, and between 2 common causes of dementia, Alzheimer's disease and dementia with Lewy bodies.
- H/M ratio threshold of 1.77 yielded 94% sensitivity and 91% specificity for the discrimination of these diagnostic clusters
- RBD's (rapid eye movement sleep behavior disorder) inclusion in the LB-related cluster suggests that it, too, may be an LB-related condition.

Dopamine Cell Implantation in Parkinson's Disease: Long-Term Clinical and ¹⁸F-FDOPA PET Outcomes

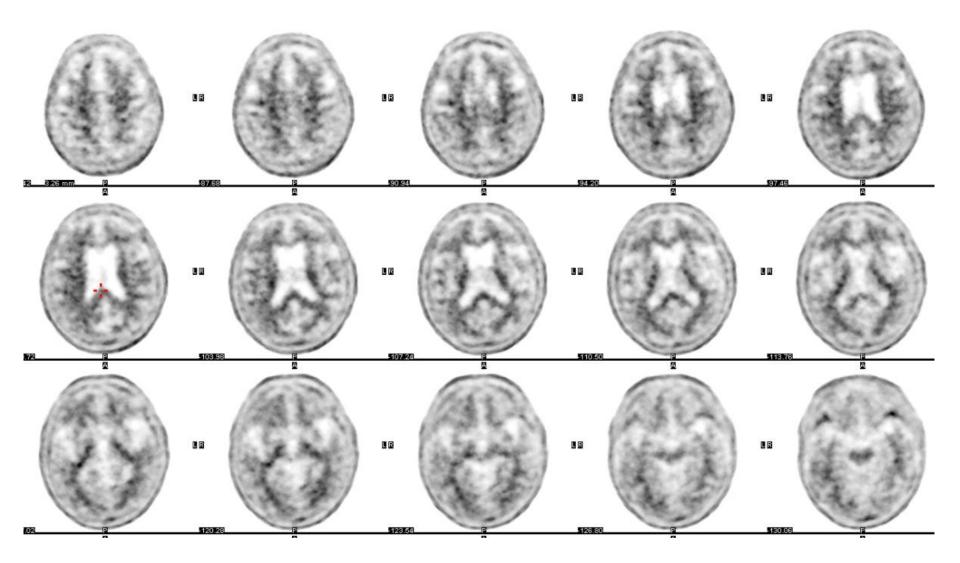

Striatal 18F-FDOPA uptake at baseline (pre) and at 1 (post 1 y), 2 (post 2 y), and 4 (post 4 y) years after bilateral implantation of fetal dopaminergic cells into putamen of PD patients.

Nongrafted caudate after implantation

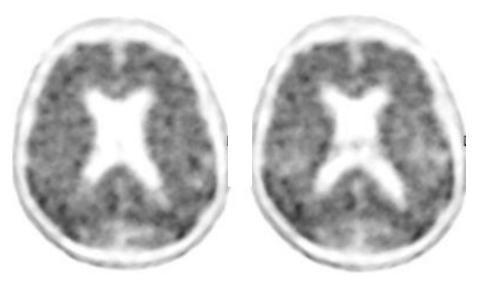
Significant treatment effect was noted over 2 y

PET amyloid tracers: fibrillar Aβ-amyloid deposition (Jan 2015)

Normal distribution (phisiological uptake in white matter) Regional retention reflects the regional density of amyloid plaques

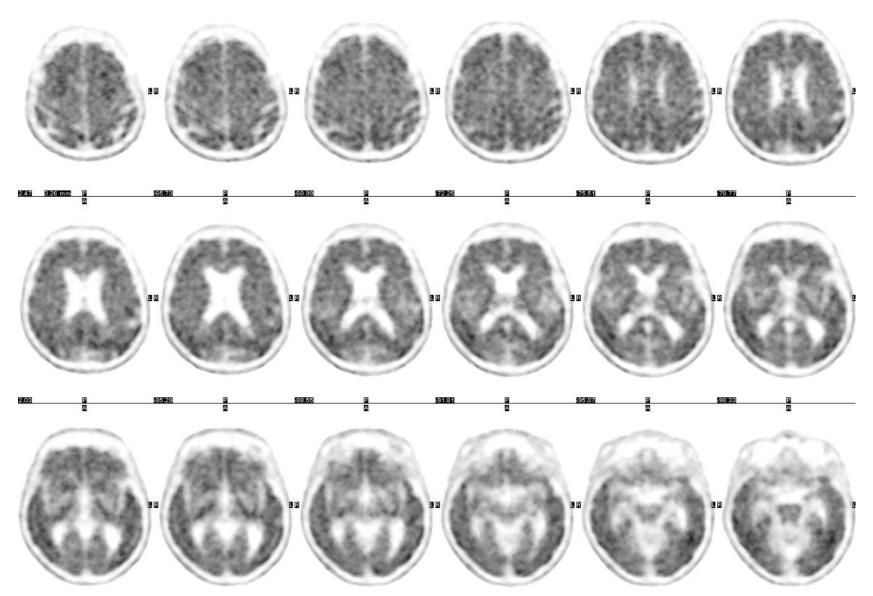


BAPL 1 (β Amyloid Plaque Load)

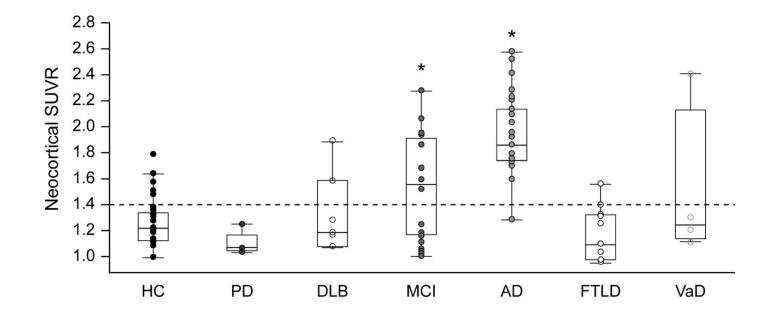

- \rightarrow Qualitative regional grading score 1-4
- •Temporal
- Parietal
- •Precuneus
- •Frontal
- \rightarrow Global assessment (BAPL) score 1-3

PET amyloid tracers

18F-Fluorbetaben


Normal distribution (phisiological uptake in white matter) Regional retention reflects the regional density of amyloid plaques Cortical binding equal to or greater than white matter binding

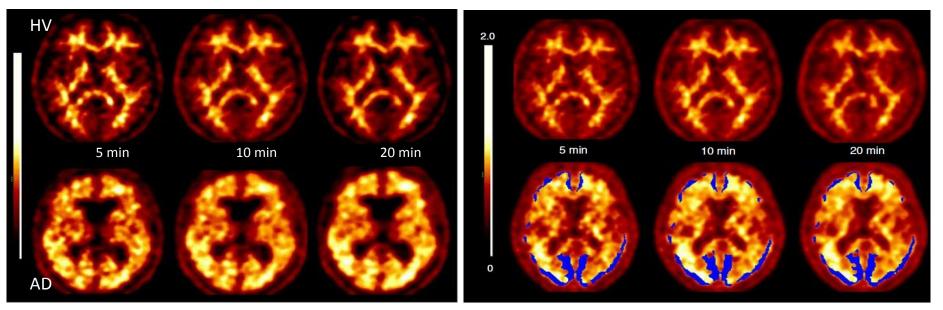
BAPL 3 (β Amyloid Plaque Load)


PET amyloid tracers

18F-Fluorbetaben

 $BAPL \ 3 \ (\beta \ Amyloid \ Plaque \ Load)$ Crtical binding equal to or greater than white matter binding

- Robust separation between AD patients and healthy age-matched control (HC) subjects both by visual image interpretation and simple quantitative measures
- Recently completed phase II clinical studies further confirmed these results.
- Matching the reported post-mortem distribution of Aβ plaques, FBB allows detection of AD pathology in the brain of subjects with a wide spectrum of neurodegenerative diseases


Alzheimer's & Dementia 11 (2015) 1050-1068

The influence of biological and technical factors on quantitative analysis of amyloid PET: Points to consider and recommendations for controlling variability in longitudinal data

Mark E. Schmidt^{a,*}, Ping Chiao^b, Gregory Klein^c, Dawn Matthews^d, Lennart Thurfjell^e, Patricia E. Cole^f, Richard Margolin^g, Susan Landau^h, Norman L. Fosterⁱ, N. Scott Mason^j, Susan De Santi^k, Joyce Suhy^c, Robert A. Koeppe¹, William Jagust^h, for the Alzheimer's Disease Neuroimaging Initiative

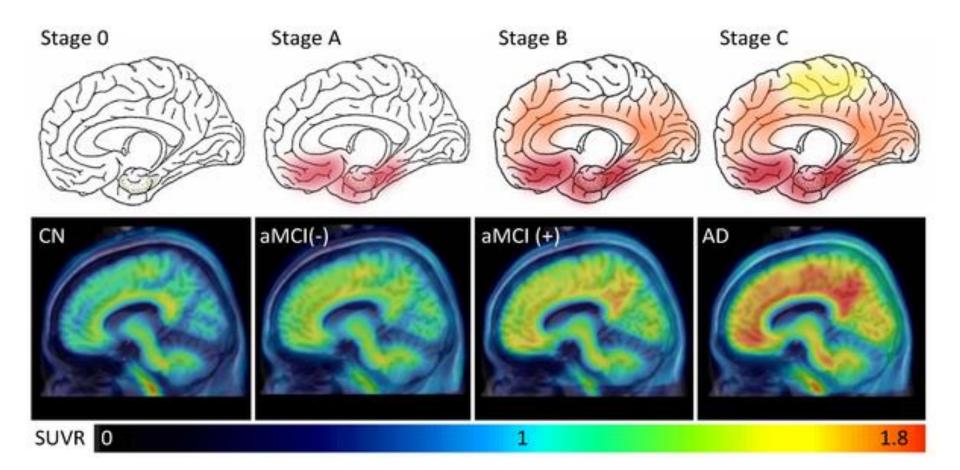
- → Measurement of subtle changes in amyloid burden requires quantitative analysis of image data.
- → Reliable quantitative analysis of amyloid PET scans acquired at multiple sites and over time requires rigorous standardization of
- acquisition protocols
- subject management
- tracer administration
- image quality control
- image processing and analysis methods

Scan duration 90 min after injection

Blue clusters represent brain regions with z-scores >2.5

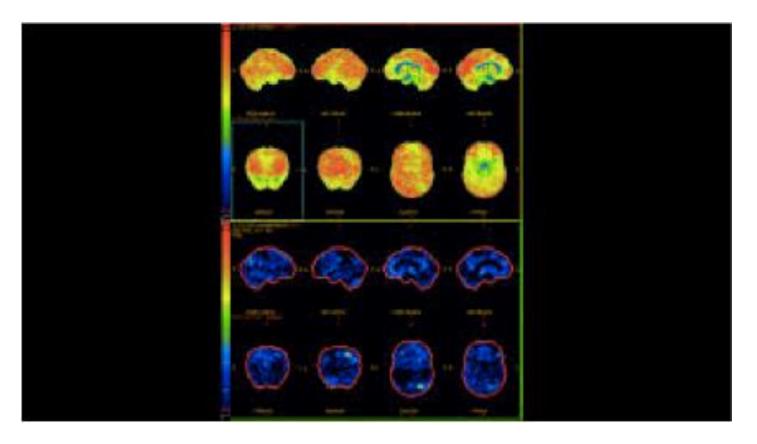
PET amyloid tracers: visual assessment

	Estimate	95% Lower CI	95% Upper CI
Sensitivity (%)			
Majority read	97.9	93.8	100.0
Reader 1	97.9	93.8	100.0
Reader 2	100.0	92.5	100.0
Reader 3	97.9	93.8	100.0
Specificity (%)			
Majority read	88.9	77.0	100.0
Reader 1	88.9	77.0	100.0
Reader 2	85.2	71.8	98.6
Reader 3	85.2	71.8	98.6


Visual assessment of florbetaben PET images by three blinded readers in the whole-brain analysis group (n = 74)

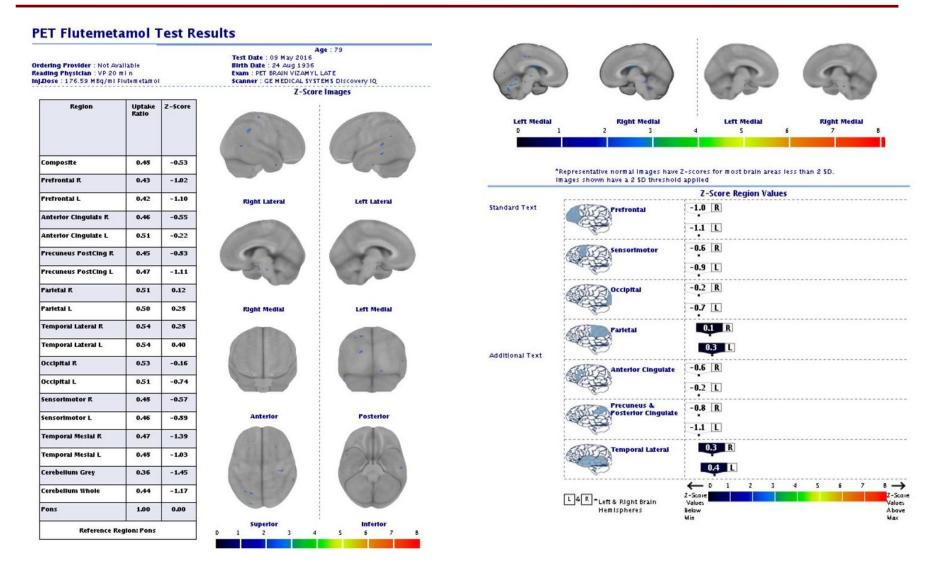
Alzheimer's & Dementia 11 (2015)

Inter-reader agreement in visual assessment of 18F-FBB images (n = 86)


	Amy+	Amy-	Severity Score 3	Severity Score 2	
Major Reader	59	27	48	11	
Reader 1	59	27	47	12	AOU-PR
Reader 2	57	29	45	12	AIFA certified training

Cerebral amyloid burden in Amnestic Mild Cognitive Impairment and Alzheimer's Disease

Method: Cortex ID Suite (GE Healthcare)


Normal database for 18F-Flutemetamol

Quantitative maps with comparison to age-matched normals

QUANTITATIVE ANALYSIS (Normal)

Method: Cortex ID Suite (GE Healthcare)

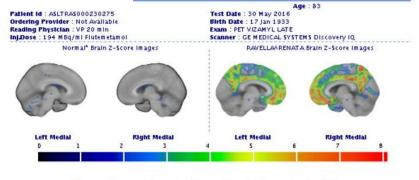
QUANTITATIVE ANALYSIS (AD)

Method: Cortex ID Suite (GE Healthcare)

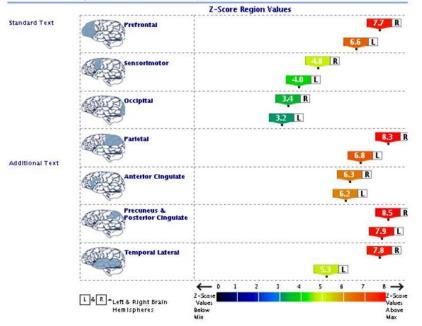
Right Lateral

Flight Medial

Anterior

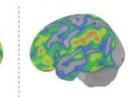

Superior

2

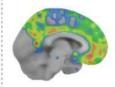

3

1

PET Flutemetamol Test Results

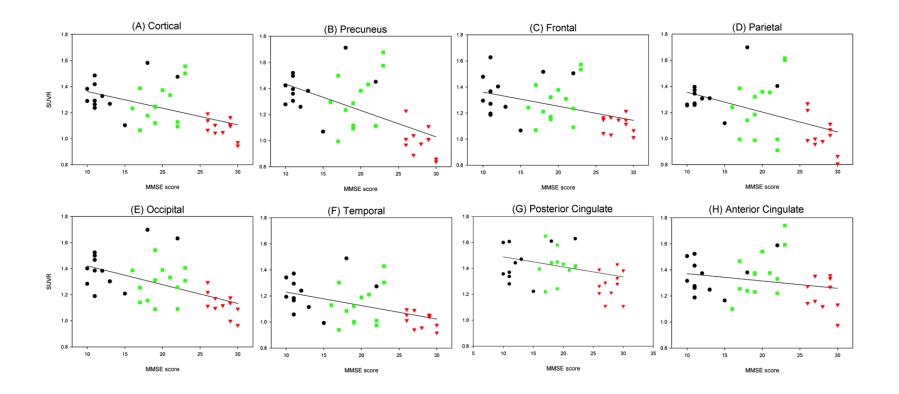


*Representative normal images have Z-scores for most brain areas less than 2 SD. Images shown have a 2 SD threshold applied



Region	Uptake Ratio	Z-Score	
Composite	0.85	7.92	
Prefrontal R	0.55	7.73	
Prefrontal L	0.53	6,61	
Anterior Cingulate R	0.55	6.34	
Anterior Cingulate L	0.93	6.19	
Precuneus PostCing R	0.94	\$54	
Precuneus PostCing L	0.93	7.89	
Parletal R	0.90	8.27	
Parletal L	0.53	6.82	
Temporal Lateral R	0.55	7.76	
Temporal Lateral L	0.74	5.26	
Occipital R	0.69	3.42	
Occipital L	0.68	3.15	
Sensorimotor R	0.76	4.54	
SensorImotor L	0.72	4.00	
Temporal Mesial R	0.57	1.58	
Temporal Mesial L	0.54	0.56	
Cerebellum Grey	0.39	-0.32	
Cerebellum Whole	0.50	0.71	
Pons	1.00	0.00	

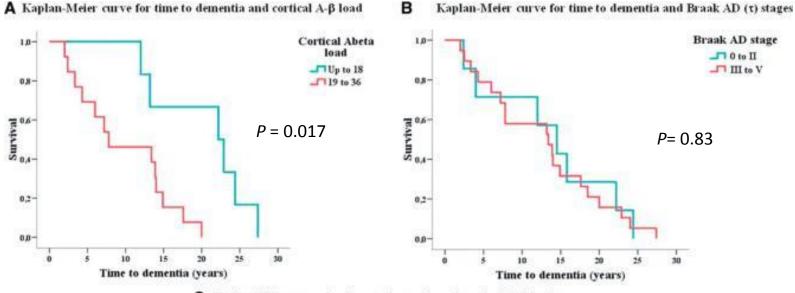
Z-Score Images


Left Lateral

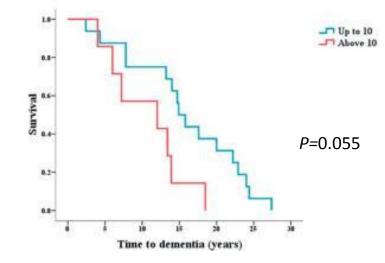
Left Medial

Correlations between amyloid deposition and Cognitive Function

Negative correlation of MMSE scores with SUVRs after adjustment for age and education


Multiple modality biomarker prediction of cognitive impairment in prospectively followed de novo Parkinson disease

- Cognitive impairment in PD increases in frequency 50–200% in the first several years of disease, and is independently predicted by biomarker changes related to nigrostriatal or cortical dopaminergic deficits, global atrophy due to possible widespread effects of neurodegenerative disease, co-morbid Alzheimer's disease plaque pathology, and genetic factors.
- > In Parkinson disease (PD) cognitive impairment can occur in a range of cognitive domains:
 - dementia (PDD) affects up to 80% of patients long-term
 - mild cognitive impairment (PD-MCI) occurs in 25–30% of non-demented patients and is a risk factor for dementia, and
 - cognitive deficits are present in some patients at the time of diagnosis.
- A range of demographic and clinical correlates or potential risk factors for cognitive decline have been identified, increasing age and duration of PD, male sex, specific motor features (postural instability gait disorder [PIGD] subtype), and a range of non-motor symptoms (e.g., visual hallucinations, apathy, depression, and rapid eye movement (REM) sleep behaviour disorder).
- Cortical Lewy body disease (LBD) pathology appears to be the major contributing pathology to cognitive decline in PD, but Alzheimer disease (AD)-related changes are also present in a significant percentage of patients.


Parkinson's Progression Markers Initiative (PPMI) <u>http://www.ppmi-info.org</u>

- ongoing, prospective, longitudinal, biomarker-rich observational study of disease progression in early PD
- up to 3 years, 423 newly diagnosed patients with idiopathic PD, untreated at baseline, from 33 international movement disorder centers

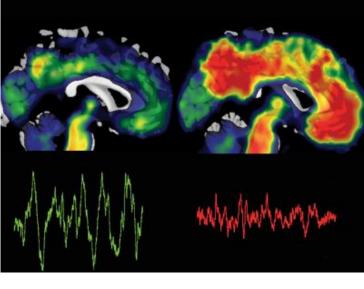
Aβ-amyloid load and survival analysis of time to dementia in patients with PD

C Kaplan-Meier curve for time to dementia and cortical LB burden

Cerebral Amyloid Deposition Is Associated with Gait Parameters in the Mayo Clinic Study of Aging

Amy-PET SUVR, independent of general measures of AD-associated neurodegeneration, is associated with poorer performance on multiple gait parameters (speed, cadence, stride length, double support time, and intra-individual stance time variability) among cognitively normal women, aged 50 to 69 years.

Table 5. Cross-Sectional Association Between PiB-PET SUVR and Gait Parameters in Women After Adjusting for AD-Associated Neurodegeneration

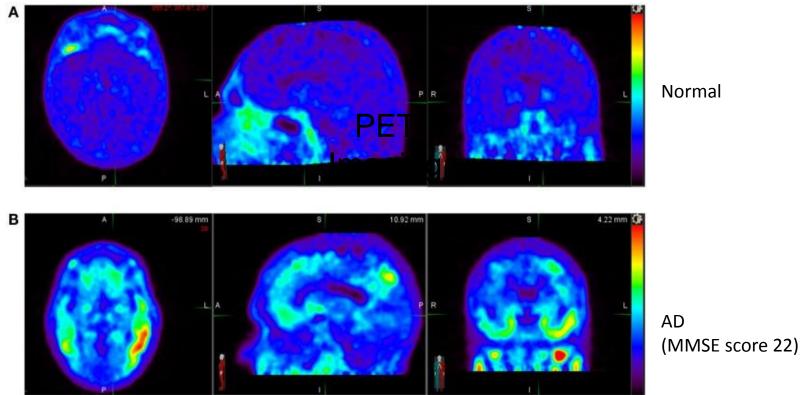

	B (95% CI)					
ROIs	Gait Speed (N = 285)	Cadence (N = 285)	Stride Length (N = 285)	Double Support Time (N = 285)	Stance Time CoV (N = 284)	
Prefrontal Orbitofrontal Parietal Temporal Anterior cingulate Posterior cingulate/ precuneus	$\begin{array}{r} -0.34 \ (-0.61, \ -0.07)^{*} \\ \hline -0.64 \ (-1.17, \ -0.11)^{*} \\ \hline -0.33 \ (-0.61, \ -0.04)^{*} \\ \hline -1.06 \ (-1.83, \ -0.28)^{**} \\ \hline -0.77 \ (-1.35, \ -0.19)^{**} \\ \hline -0.65 \ (-1.19, \ -0.12)^{*} \end{array}$	-0.52 (-0.84, -0.21)** -0.96 (-1.57, -0.35)** -0.50 (-0.83, -0.17)** -1.45 (-2.34, -0.55)** -1.16 (-1.82, -0.49)** -0.96 (-1.57, -0.35)**	-0.11 (-0.33, 0.12) -0.22 (-0.65, 0.21) -0.11 (-0.34, 0.13) -0.45 (-1.08, 0.17) -0.28 (-0.75, 0.19) -0.25 (-0.68, 0.18)	0.47 (0.14, 0.79)** 0.89 (0.27, 1.5)** 0.47 (0.14, 0.81)** 1.33 (0.42, 2.23)** 1.08 (0.41, 1.75)** 0.95 (0.33, 1.57)**	0.19 (0.05, 0.34)** 0.40 (0.12, 0.69)** 0.21 (0.06, 0.36)** 0.59 (0.17, 1.01)** 0.43 (0.12, 0.75)** 0.42 (0.14, 0.71)**	
Motor ROI	<u>-0.13 (-0.25, -0.02)*</u> slower gait speed (m/sec)	-0.20 (-0.34, -0.07)** lower cadence (steps/min)	-0.05 (-0.14, 0.05)	0.18 (0.05, 0.32)** longer double support time (sec)	0.07 (0.008, 0.13)* greater stance time variability	

Parkinson's Progression Markers Initiative (PPMI) <u>http://www.ppmi-info.org</u>

• ongoing, prospective, longitudinal, biomarker-rich observational study of disease progression in early PD

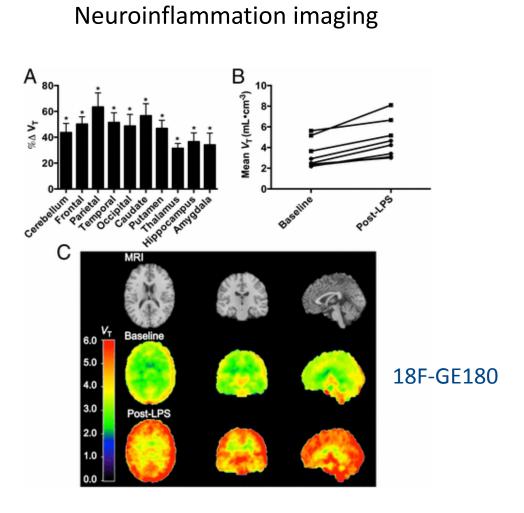
 up to 3 years, 423 newly diagnosed patients with idiopathic PD, untreated at baseline, from 33 international movement disorder centers β-amyloid pathology relationship with both non-rapid eye movement (NREM) sleep disruption and memory impairment in older adults

Amy-PET



Normal Amyloid deposition in poor sleep Sleep

- β-amyloid burden in medial prefrontal cortex (mPFC) correlates significantly with the severity of impairment in NREM slow waves generation.
- By linking β-amyloid pathology with impaired NREM SWA, these data implicate sleep disruption as a mechanistic pathway through which β-amyloid pathology may contribute to hippocampusdependent cognitive decline in the elderly.


PET Imaging of Tau Pathology in Alzheimer's Disease and Tauopathies

18F-AV-1451

Very low non-specific binding in white matter as well as cortical gray matter of healthy subjects

Frontiers in Neurology 2015

Activation of microglia after administration of a potent immune activator (LPS)