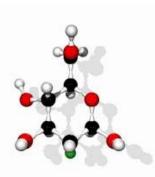
PDTA Lesioni Focali Epatiche Medicina Nucleare

Livia Ruffini

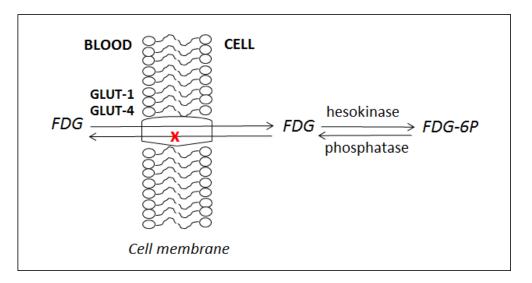
SC Medicina Nucleare Azienda Ospedaliero-Universitaria di Parma

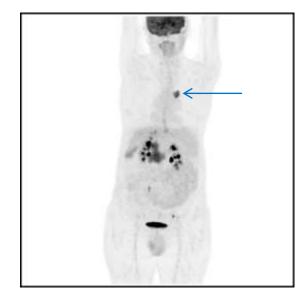

PET-SPECT/CT tracers to study liver lesions

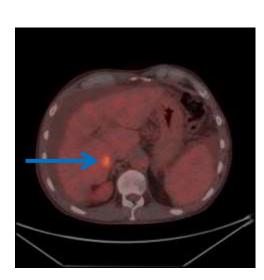
		Cholangiocarcinoma		
Metabolic	[¹⁸ F]FDG	 Pre-OLT staging of HCC 		
activity		 Liver MTS of colorectal cancer and other tumors 		
		 Poorly differentiate NETs G3 (lower SSR expression) 		
		 High G2 NETs with Ki67>15-20% (dedifferentiation may indicate the escape phenomenon with worst prognosis) 		
R status	[⁶⁸ Ga]DOTA-peptide	Well-differentiated NETs		
Membrane synthesis	[¹⁸ F]choline	• HCC		
Specific amine	[¹⁸ F]DOPA [¹²³ I]mIBG	 Alternative or problem-solving tool when somatostatin receptor imaging is negative or in assessing response to treatment 		
Specific amine profile		Insulinoma		
		 Medullary thyroid carcinoma 		
		 Pheochromocytomas and paragangliomas 		


Metabolic activity: [18F]FDG PET/CT

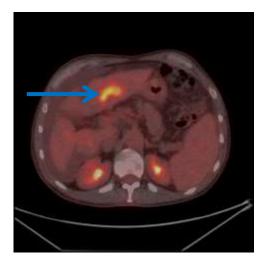
Pathophysiological rationale

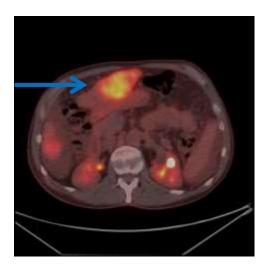

- Non-specific tracer targets the glucose pathway of cells
- It enters the cell via glucose transporters
- Its accumulation is an index of increased glucose metabolism, tumor viability and aggressiveness

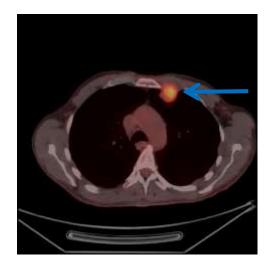

Radioactive Sugar

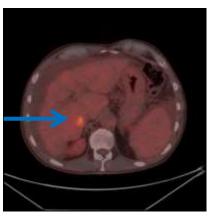


Normal Uptake time 45-60 min

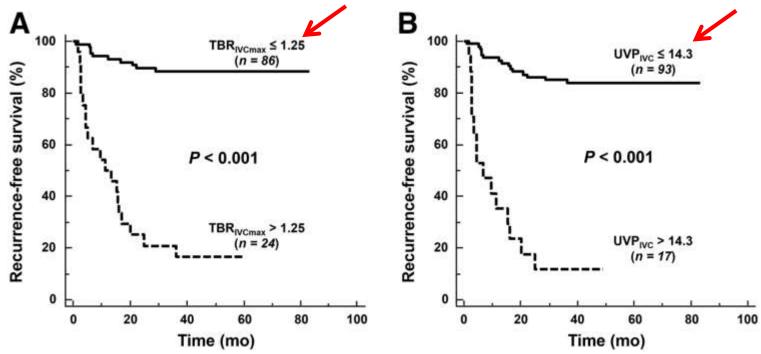



Role of FDG-PET in the assessment of different treatment modalities for HCC pre-OLT

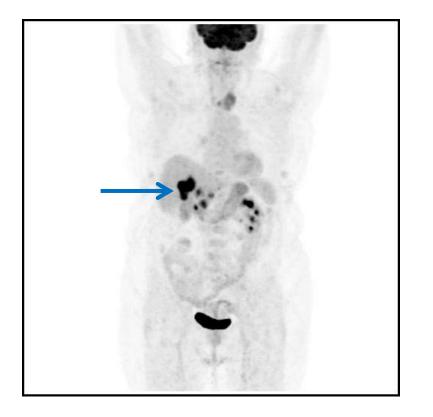




- 2015 HCC S6 lesion → RFA
- 2016 multifocal disease
- 01/2017 CT: pleural lesion

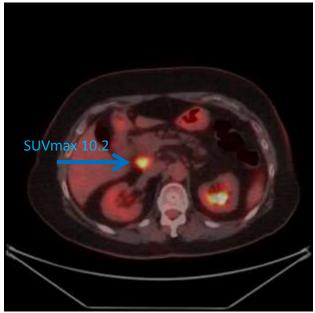


Prediction of Post transplantation Recurrence of Hepatocellular Carcinoma Using Metabolic and Volumetric Indices of 18F-FDG PET/CT.

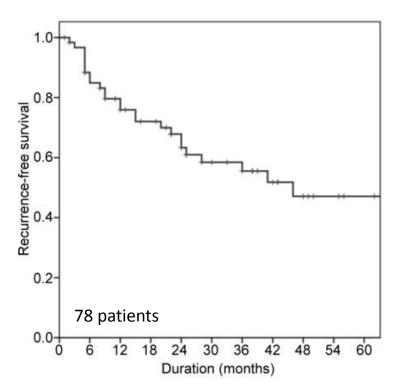


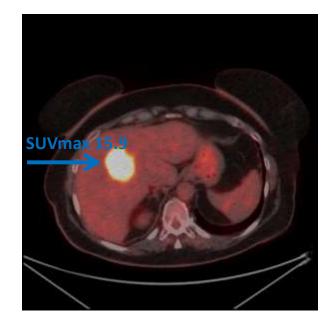
Kaplan–Meier survival analysis with regard to $\text{TBR}_{\text{IVCmax}}$ and UVP_{IVC} . (A) Patients with low $\text{TBR}_{\text{IVCmax}}$ (\leq 1.25) showed significantly longer recurrence-free survival than those with high $\text{TBR}_{\text{IVCmax}}$ (>1.25). (B) Patients with low UVP_{IVC} (\leq 14.3) showed significantly longer recurrence-free survival than those with high UVP_{IVC} (>14.3).

> Yong-il Kim J Nucl Med 2016 Hsu CC. Transplantation. 2016


Preoperative FDG-PET/CT in cholangiocarcinoma

- Perihilar intrahepatic cholangiocarcinoma
- Staging
- FDG-PET: T + regional lymph node metastasis




- FDG-PET/CT improve nodal staging and identification of distant metastases,
- •Altering clinical management in up to 17–30% of patients recommended for pre-operative staging of both intraand extra-hepatic cholangiocarcinomas.

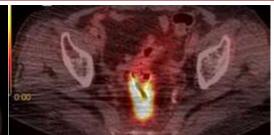
Preoperative SUVmax at 18F-FDG PET-CT Predicts Recurrence of Biliary Tract Cancer

Variable	Category	Hazard ratio (95% confidence interval)	<i>p</i> -Value
SUV _{max}	≤5	Reference	0.008
	>5	4.124 (1.459-11.661)	
Lymphatic invasion	Absent	Reference	0.367
	Present	1.710 (0.533-5.489)	
Tumor differentiation	Well/Moderate	Reference	0.972
	Poor	1.269 (0.338-4.760)	
N Stage	0	Reference	0.992
87.7	1	1.006 (0.324-3.118)	

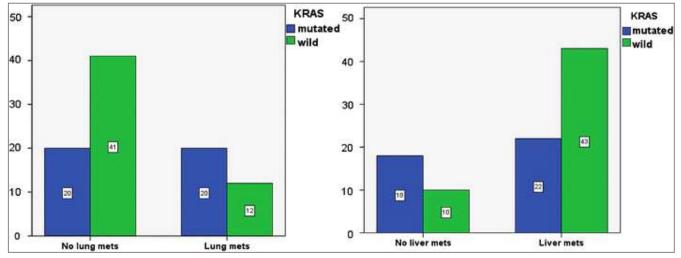
At multivariate analysis high SUVmax (>5.0) independent risk factors for tumor recurrence (p=0.008)

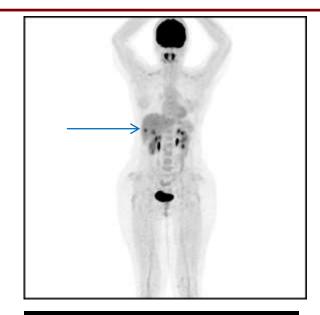
Park M and Lee SM Anticancer Research (2014)

- Recurrence of cholangiocarcinoma (previous surgery/RFA)
- MR recurrence in the VII-VIIIs
- FDG-PET + SUV 4.3



18F-FDG PET/CT

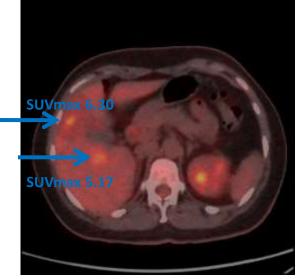

Correlation between KRAS mutation and ¹⁸F-FDG uptake in colorectal cancer



- Patients harboring mutant KRAS tended to metastasis to lung rather than liver.
- Wild-type KRAS tended to metastasis to the liver than to lung.
- Patients with KRAS mutation has higher ¹⁸F-FDG uptake

Abdom Radiol (2017)

FDG-PET/CT for systemic staging of patients with newly diagnosed breast cancer

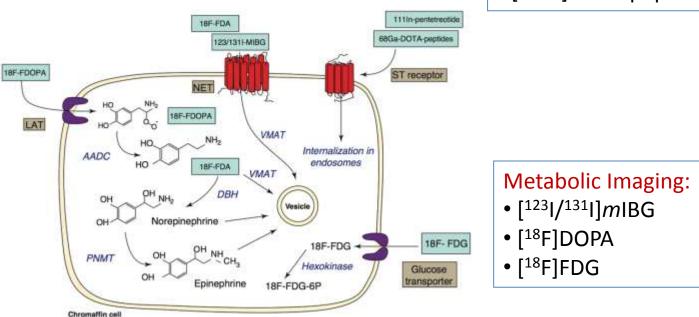

- Breast IDC , progression during fulvestrant
- Liver MTS

High accuracy of PET/CT in stage IIB or higher stage whatever the BC cancer phenotypes (TNBC, HER2+ and ER+/HER2-), whatever the tumour grade and whatever the patient's age.

Groheux, D. Eur J Nucl Med Mol Imaging (2017)

Baseline

Follow-up

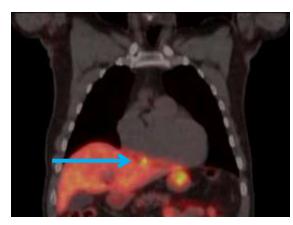

PET AND SPECT TO STUDY NETs

Different tracers to determine:

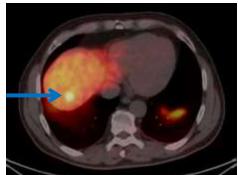
- Receptors status
- Specific amine profile
- Metabolic activity
- Receptors ligands behaviour

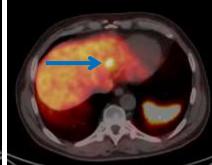
Receptor imaging:

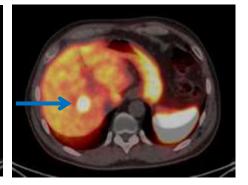
- [¹¹¹In]DTPA-octreotide (Octreoscan)
- [68Ga]DOTA-peptide

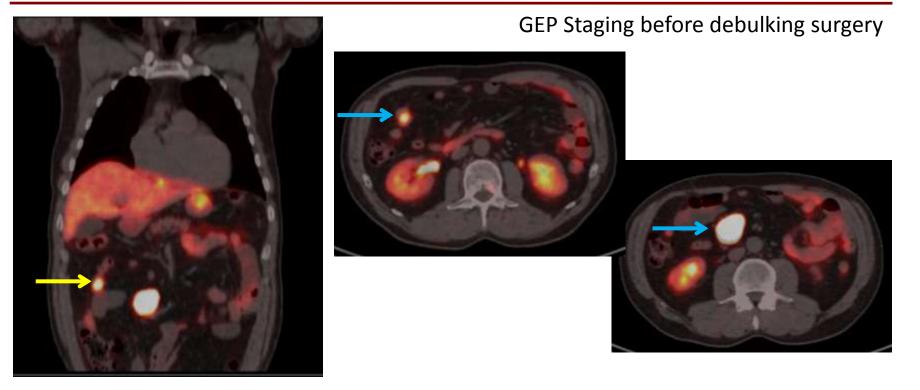

- [⁶⁸Ga]: *positron emitter* (emission β+ ; 1.9 Mev); **T1/2: 67.6 min**
- DOTA : (1,4,7,10-TetraazaCycloDodecan-1,4,7,10 Tetraacetic Acid)
- *peptide* (NOC/TOC/TATE): <u>somatostatin analogue</u>
- NOC binds SSTR 2-3-5
- TOC binds SSTR 2-5
- TATE binds SSTR 2

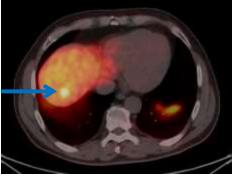
⁶⁸Ga

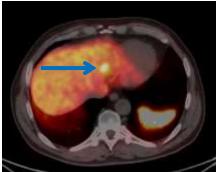

Radionuclide	Half-life	Positron decay (%)	Emax (keV)	Production
¹¹ C	20.3 min	100	961	Cyclotron
¹³ N	9.97 min	100	1190	Cyclotron
¹⁵ O	2.1 min	100	1732	Cyclotron
¹⁸ F	110 min	97	634	Cyclotron
⁶⁴ Cu	12.8 h	19	656	Cyclotron
⁶⁸ Ga	67.6 min	89	1899	Generator
⁸² Rb	76 s	95	3150	Generator
¹²⁴ I	4.17 d	23	2100	Cyclotron

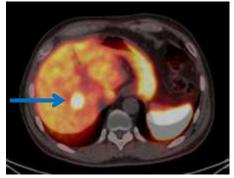

[⁶⁸Ga]DOTA-TOC/NOC - Staging


- Localize primary tumours and detect sites of metastatic disease (staging): to provide information for therapeutic planning.
- ✓ Particularly, NETs with a Ki67 index <20% (WHO G1 and G2) have an overexpression of membrane bound somatostatin receptors (SSTRs), which can be targeted with radiolabeled analogs</p>

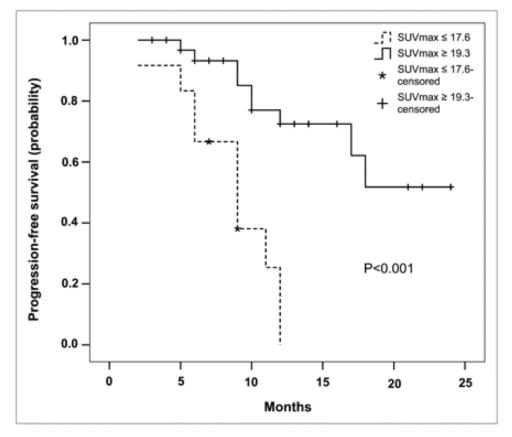

GEP staging before debulking surgery



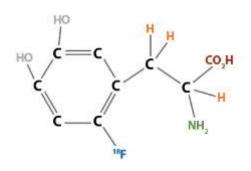




[⁶⁸Ga]DOTA-TOC PET/CT



[⁶⁸Ga]DOTA-TOC/NOC - Risk stratification of NET

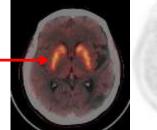

Quantitative assessment of SST receptor status

- SUVmax, measured at 68Ga-DOTA-TOC/NOC PET, correlated with the clinical and pathologic features of NETs.
- SUVmax was significantly higher in patients with pancreatic endocrine tumors and in those with well-differentiated carcinoma.

Campana D. Et al. J Nucl Med 2010

Specific amine profile: [¹⁸F]DOPA PET/CT

Pathophysiological rationale

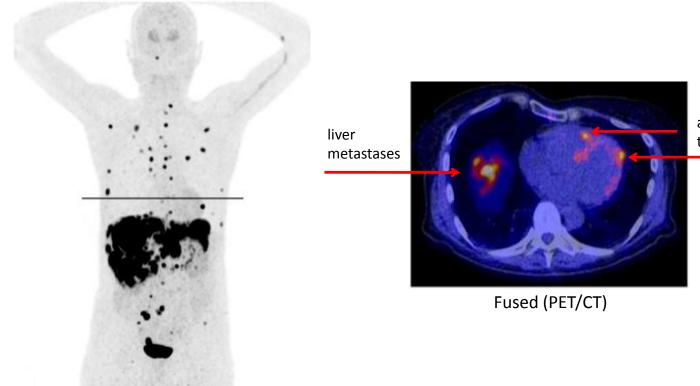

Several types of NETs are able to take up, decarboxylate and store amino acids, such as DOPA, and their biogenic amines

Indications

- Diagnosis of insulinoma and beta-cell hyperplasia in adult patients
- Diagnosis of focal congenital hyperinsulinism in infants
- Medullary thyroid carcinoma
- Pheochromocytomas and paragangliomas

 DOPA decarboxylase activity Functional state of dopamine innervations in vivo

Basal ganglia


Normal Uptake time 60 min

PET/CT

Serotonin producing NET

[¹⁸F]DOPA PET/CT

apex of both the left and right ventricle

MIP

- Essential component of phospholipids and cell membrane metabolism
- Choline is incorporated into cell membrane phospholipids through phosphorylcholine synthesis *RoivainenA et al 2000*
- Choline is phosphorylated by choline kinase & trapped in the cell
- Malignant tumours increased cell membrane metabolism, increased choline use and increased CK expression (enzyme which phosphorylates choline) Ackerstaffet al, Can Res 2001

Treatment monitoring of HCC treated with EBRT

¹⁸F-FDG PET/CT

¹⁸F-choline PET/CT

¹⁸F-choline PET/CT